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Abstract. Angle-resolved photoemission spectra are calculated microscopically for the two-
dimensional attractive Hubbard model. A system of self-consistentT -matrix equations are solved
numerically in the real-time domain. The single-particle spectral function has a two-peak structure
resulting from the presence of bound states. The spectral function is suppressed at the chemical
potential, leading to a pseudogap-like behaviour. At high temperatures and densities the pseudogap
diminishes and finally disappears; these findings are similar to the experimental observations for
the cuprates.

Real-space pairing [1] is the simplest physical idea that enables one to explain the pseudogap
phenomenon observed for the normal state of high-Tc superconductors (HTSC) [2–13]. At low
temperatures and densities, carriers are paired in weakly overlapping bound states separated
from the single-particle band by a binding energy of the order of a few hundred degrees. The
chemical potential is located between the two bands, thereby reducing the intensity of the low-
energy single-particle (photoemission, specific heat, tunnelling), spin (susceptibility, nuclear
relaxation rate), and particle–hole (optical conductivity) processes. At temperatures of the
order of the binding energy, carriers become unbound and restore the Fermi-liquid behaviour.
The layered structure of the cuprates supports this scenario, since reduced dimensionality
favours pairing. Also, the phenomenology of a charged Bose gas can be quite successfully used
in the explanation of a number of normal and superconducting properties of HTSC [1,14,15].

It is therefore important to study model systems with pairing, such as the two-dimensional
attractive Hubbard model. The simplicity of the model allows one to separate the net effect of
the attractive interaction from the complications related to the origin of the pairing mechanism
and to the complicated dependence of the effective potential on microscopic parameters. One
successful application of the attractive Hubbard model to the physics of cuprates is due to
Randeria and co-workers [16, 17]. Using the quantum Monte Carlo method, they found
a significant reduction of the static spin susceptibility and nuclear relaxation rate at low
temperatures and intermediate couplings. Recently, Vilket al [18] found a pseudogap in
the spectral function of the attractive Hubbard model using Monte Carlo simulations and the
maximum-entropy technique. Thus, it was demonstrated that real-space pairing can account
for some unusual properties of HTSC.
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The self-consistentT -matrix approximation [19–21] provides another method for studying
dynamic properties of the attractive Hubbard model. This approach is based on the low-density
approximation to fermion systems due to Galitskii [22], which becomes exact in the limit of
vanishing density. However, the resulting system of self-consistent integral equations is not
easy to solve. Analytical treatment is very difficult, although it is sometimes attempted [23,24].
The full numerical solution of the equations is required. In the previous numerical studies of
the problem [25, 26] the equations were solved for imaginary times and results were then
continued numerically to real times. In these papers relatively small couplings were studied
and pseudogap features were found only at large momenta.

In our previous paper [27] we formulated and solved numerically theT -matrix equations
for the two-dimensional attractive Hubbard model for real times, thereby avoiding the necessity
for analytical continuation. There, we focused on two-particle properties—primarily on the
binding energy of pairs and its dependence on the particle density. In this paper we would like
to discuss single-particle dynamics, in particular the single-particle spectral function which is
directly related to angle-resolved photoemission spectra (ARPES). We find a clear pseudogap
behaviour of the ARPES at small momentak, low densitiesn, and low temperaturesT . With
increasingn andT , the pseudogap disappears, in accordance with experimental observations
for the cuprates [28].

The two-dimensional attractive Hubbard model is defined by the Hamiltonian

H =
∑
kσ

(εk − µ)c†
kσ ckσ −

|U |
N

∑
kpq

c
†
k↑ck+q↑c

†
p↓cp−q↓ (1)

written in standard notation.εk = −2t (coskx + cosky) is the bare single-particle spectrum,
|U | is the coupling strength, andN is the total number of sites in the system. The chemical
potentialµ determines the average particle densityn. We regard equation (1) as a phenom-
enological model for the low-density system ofholesin the normal states of HTSC.

In the low-density limitn � 1, one can make use of the small gas parameter and select
only ladder diagrams in a diagrammatic representation of theT -matrix [20, 21], which leads
to the expression

T (q, ω) = −|U |
/(

1− |U |
∫

dω1

2π

B(q, ω1)

ω − ω1
+ i
|U |
2
B(q, ω)

)
(2)

where

B(q, ω) = −1

N

∑
k′

∫
dω1

2π
A(k′, ω1)A(q − k′, ω − ω1) tanh

βω1

2
(3)

whereA(k, ω) is the single-particle spectral function andβ = (kBT )−1 is the inverse absolute
temperature. The real and imaginary parts of the self-energy6′ and6′′ are expressed via
T = T ′ + iT ′′ as follows:

6′(k, ω) = 1

N

∑
q

∫
dω1

2π
A(q − k, ω1)

×
[
fF (ω1)T

′(q, ω + ω1) +
∫

dω2

π

fB(ω2)T
′′(q, ω2)

ω2 − ω1− ω
]

(4)

6′′(k, ω) = 1

N

∑
q

∫
dω1

2π
A(q − k, ω1)T

′′(q, ω + ω1) [fF (ω1) + fB(ω + ω1)] (5)

wherefF,B(ω) = [exp(βω) ± 1]−1 are Fermi and Bose functions respectively. Finally, the
self-energy determines the spectral function as

A(k, ω) = −26′′(k, ω)
[ω − (εk − µ)−6′(k, ω)]2 + [6′′(k, ω)]2

. (6)
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The integrals with singular kernels in equations (2) and (4) are understood in the principal-
value sense. The set of equations (2)–(6) is to be solved self-consistently for given|U |,µ, and
temperatureT ; then the particle density is given by

n = 2

N

∑
k

∫
dω

2π
A(k, ω)fF (ω).

Usually, a self-consistent solution is obtained iteratively, starting from a guessed form of
A(k, ω) and using the fast-Fourier-transform algorithm to calculate momentum–frequency
sums [25,26]. In our calculations we used a 64× 64 lattice and a uniform mesh of 512 points
in the frequency interval−20t < ω < 30t . The convergence of the iterative process is the
major problem of the method, which puts limitations on the values of model parameters for
which a self-consistent solution can be obtained. The convergence deteriorates for large|U |
andn and lowT . The physically interesting values of|U | start at∼6t , when the binding
energy of the pairs is of the order oft . In this work, |U | = 8t is used. For this coupling,
iterations converge down toT = 0.3t for very low densitiesn < 0.03, and up ton ∼ 0.20 for
a high temperatureT = 1.0t .

Once a self-consistent solution is obtained, the intensity of the photoemission process is
simply

I (k, ω) = I0(k)A(k, ω)fF (ω) (7)

where I0(k) involves the electron–photon matrix element, and is frequency independent.
Equation (7) is approximate; for a discussion of its validity, see, e.g., [29]. In the following,
we setI0(k) = 1.

In analysing the numerical results to be presented below, it is useful to keep in mind the
exactly solvable atomic limit (t = 0) of the Hubbard model:

1

2π
A(k, ω) = n

2
δ(ω +µ + |U |) +

(
1− n

2

)
δ(ω +µ) (8)

from which the following properties are inferred.

(a) The spectral function has the form of two peaks with weightsn/2 and 1− n/2 (which are
very different ifn� 1).

(b) The two peaks are separated by the binding energy of the pairs (which is|U | in the atomic
limit).

(c) At zero temperature,µ = −|U |/2, and in equation (7) the Fermi function eliminates the
second peak ofA(k, ω). The resulting intensityI (k, ω) is a single peak located|U |/2
below the chemical potential. The system would therefore display a ‘pseudogap’ (a true
gap in this case) of size|U |/2.

(d) At higher temperatures, the Fermi function is smoothed out, giving rise to the second peak
at a higher energy and weakening the first one, so the former might become stronger than
the latter.

In the general case of finitet/|U |, non-zero kinetic energy leads to a number of new effects.
It reduces the binding energy, i.e. the interpeak distance, and assigns finite widths to the peaks
of A(k, ω). Next, it restores thek-dependence ofA(k, ω) andI (k, ω). Finally, due to the
finite radii of pairs and their overlapping, the binding energy becomes density dependent [27].
However, our numerical results show that properties (a)–(d) listed above remain valid even at
finite t/|U |. Moreover, we believe they are generic to any fermion model with attraction in
the low-density limit.

In figure 1 we show the solution of equations (2)–(7) for the lowest densityn = 0.017 and
T = 0.3t . I (k, ω) displays a complicatedk- andω-dependence which can be understood as
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Figure 1. The intensity of the ARPESI (k, ω) = A(k, ω)fF (ω) for densityn = 0.017, temperature
T = 0.3t , and several momentak = m(π/8, π/8),m = 0, 1, 2, and 3 (from the top curve down).

follows. A particle with momentumk can be found in two distinctly different states: either in
a state of the single-particle band with an extended wave function or as a component of a bound
state with a localized wave function. The two possibilities give rise toA(k, ω), which consists
of two peaks separated by the pair binding energy1E = 2.1t (for |U | = 8t). Multiplication
by the Fermi function cuts off the high-energy (single-particle band) peak, which depends on
the energy of the latter and the temperature. Fork = (0, 0) in figure 1, the high-energy peak
is reduced in height significantly—to that of the low-energy peak, but not to zero. Note that
after the cut-off, the peak is slightly shifted from its original position. The position of the
high-energy peak disperses withk as does the bare spectrumεk, and, ask increases, the peak
gets cut off by the Fermi function very rapidly (compare the cases for the different momenta
k in figure 1 forω > 0). Let us now turn to the low-energy peak. The probability of finding
a particle with momentumk in a bound state is the square of the bound state’s wave function.
For zero total momentumP , one has

ψP=(0,0)(k) = C

E − 2ε(k)
(9)

whereC is the normalization constant andE the energy of the bound state measured from
the bare atomic level. The relative height of the low-energy peaks in figure 1 is in good
agreement with|ψ(k)|2 forE = 2ε(0, 0)−1E = −10.1t . This corroborates the bound-state
origin of the low-energy peaks inA(k, ω) andI (k, ω). Thus, on the basis of figure 1, we
conclude that ARPES of the attractive Hubbard model exhibit a clear pseudogap behaviour
at low temperatures and densities. The momentum and frequency dependences of the spectra
have simple physical explanations.

The temperature dependence ofI (k, ω) for n = 0.017 andk = (0, 0) is shown in fig-
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Figure 2. The temperature dependence ofI (k, ω) for density n = 0.017 and momentum
k = (0, 0).

ure 2. There are two main effects as temperature increases. First, weight is transferred from
the low-energy peak to the high-energy one. This is due to the progressive thermal excitation
of particles to the single-particle band and the consequent weaker influence of the bound
states on the single-particle spectral function. Secondly, the whole structure moves to higher
energies relative to the chemical potential. These two effects lead to the rapid suppression
of the pseudogap as temperature increases. Note that the distance between the two peaks is
T -independent and remains approximately the pair binding energy (slightly reduced by the
cut-off), in accordance with the atomic limit.

Figure 3 presents the density dependence ofI (k, ω) for T = 0.5t andk = (0, 0). Clearly,
the pseudogap disappears asn increases. We have already argued elsewhere [27] that this is
a result of the rise of the two-particle level due to the packing effect when pairs begin to
overlap. (Intuitive arguments of this kind were given earlier in [16].) Since the binding energy
decreases withn, the temperature becomes progressively more effective in unbinding pairs,
washing away the pseudogap.

It is quite remarkable that such a simple system as the attractive Hubbard model and such
complex systems as high-Tc superconductors have very similar dynamical properties. They
both display pseudogaps at low temperatures and carrier densities, which disappear asT and
n increase. This suggests the conclusion that the carriers in HTSC do experience some sort
of short-range attraction. HTSC therefore exhibit properties which are generic to fermionic
systems with attraction and which are captured in our model calculations.

One could now proceed in elaborating the model while trying to keep the properties
obtained intact. Further insight into the problem can be gained by considering the opposite
limit of nearly completefilling 2 − n � 1. In this case, equation (1) may be viewed as a
phenomenological model forelectronsrather than holes. (To some extent, the nearly fully



746 P E Kornilovitch and Bumsoo Kyung

-6.0 -4.0 -2.0 0.0 2.0 4.0
ω/t

0.00

0.02

0.04

0.06

I(
k,

ω
),

  t
-1

n=5.9%

n=3.3%

n=1.7%

Figure 3. The density dependence ofI (k, ω) for temperatureT = 0.5t and momentumk = (0, 0).

filled band imitates the nearly filled lower Hubbard band when the Coulomb repulsion is
taken into account. Unfortunately, this analogy is not complete, due to different temperature
behaviour ofµ; see below.) The quantityI (k, ω) in equation (7) now has the meaning of
the number of electrons emitted from the system per unit time, which brings the whole model
closer to reality. There is no need to recalculate the spectra, since on a bipartite lattice the
dilute and nearly filled limits are related by the particle–hole transformation, which leads to
the relation

A(k, ω; n)fF (ω) = A(k +Q,−ω; 2− n)[1− fF (−ω)] (10)

whereQ = (π, π) for the square lattice. Due to the inversion of the occupation numbers, it
is now the pairing-induced peak that gets cut off by the Fermi function. The inversion of the
frequency places the remaining peak below the chemical potential. The resulting ARPES are
shown in figure 4. They are complementary to the spectra of figure 1. Clearly, a pseudogap is
present, because the spectrum with the largest momentumk = (π, π) is still peaked far below
the chemical potential.

The overall picture looks very much like the spectra of a weakly interacting systembut
shiftedfromµ by half of the pair binding energy. We emphasize that pairs themselves arenot
seen explicitly in the spectra, since the pair-induced peak ofA(k, ω) has been cut off by the
Fermi function. Nevertheless, the pairs are present implicitly, manifesting themselves in the
shift of the chemical potential. This observation is important for understanding the ARPES of
HTSC.

We do not present temperature and density dependences ofI (k, ω) for the nearly filled
case, for they are complementary to figures 2 and 3, respectively. The pseudogap now vanishes
with decreasingelectron density (increasing hole doping), in accordance with figure 3. The
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Figure 4. I (k, ω) for nearly complete fillingn = 1.983, temperatureT = 0.3t , and several
momentak = m(π/16, π/16).

temperature dependence is, however, different from the dilute limit. At nearly full filling,
the chemical potentialgoes upwith temperature, and the distance betweenµ and the single-
particle band increases. Therefore, the pseudogap is expected to rise withT in this case. To
obtain the correct temperature behaviour, one would need to consider the density regime close
to half-filling, which is outside the range of validity of theT -matrix approximation.

In conclusion, we have shown that photoemission spectra of the attractive Hubbard model
in the low-density limit display a clear pseudogap behaviour, qualitatively similar to that of
high-Tc superconductors. Our findings support the suggestion that the pseudogap feature
observed in HTSC results from real-space pairing and the formation of bound pairs in the
normal state.
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